Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 27(3): 109232, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38425843

RESUMO

"Candidatus Liberibacter spp." are insect-vectored, fastidious, and vascular-limited phytopathogens. They are the presumptive causal agents of potato zebra chip, tomato vein clearing, and the devastating citrus greening disease worldwide. There is an urgent need to develop new strategies to control them. In this study, we characterized a dual-specificity serine/tyrosine phosphatase (STP) that is well conserved among thirty-three geographically diverse "Candidatus Liberibacter spp." and strains that infect multiple Solanaceaea and citrus spp. The STP is expressed in infected plant tissues, localized at the plant cytosol and plasma membrane, and interferes with plant cell death responses. We employed an in silico target-based molecular modeling and ligand screen to identify two small molecules with high binding affinity to STP. Efficacy studies demonstrated that the two molecules can inhibit "Candidatus Liberibacter spp." but not unrelated pathogens and confer plant disease tolerance. The inhibitors and strategies are promising means to control "Candidatus Liberibacter spp."

3.
Molecules ; 27(24)2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36557860

RESUMO

Citrus greening, also known as Huanglongbing (HLB), is caused by the unculturable bacterium Candidatus Liberibacter spp. (e.g., CLas), and has caused a devastating decline in citrus production in many areas of the world. As of yet, there are no definitive treatments for controlling the disease. Antimicrobial peptides (AMPs) that have the potential to block secretion-dependent effector proteins at the outer-membrane domains were screened in silico. Predictions of drug-receptor interactions were built using multiple in silico techniques, including molecular docking analysis, molecular dynamics, molecular mechanics generalized Born surface area analysis, and principal component analysis. The efflux pump TolC of the Type 1 secretion system interacted with natural bacteriocin plantaricin JLA-9, blocking the ß barrel. The trajectory-based principal component analysis revealed the possible binding mechanism of the peptides. Furthermore, in vitro assays using two closely related culturable surrogates of CLas (Liberibacter crescens and Rhizobium spp.) showed that Plantaricin JLA-9 and two other screened AMPs inhibited bacterial growth and caused mortality. The findings contribute to designing effective therapies to manage plant diseases associated with Candidatus Liberibacter spp.


Assuntos
Citrus , Hemípteros , Rhizobiaceae , Animais , Liberibacter , Peptídeos Antimicrobianos , Simulação de Acoplamento Molecular , Claritromicina/farmacologia , Citrus/microbiologia , Doenças das Plantas/microbiologia
4.
Drug Dev Ind Pharm ; 48(8): 406-416, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36268597

RESUMO

OBJECTIVES: The present study aims to investigate the protective effect of Euphorbia thymifolia and Euphorbia hirta extracts on in vitro antioxidant activity and in vivo analysis on hepatic marker enzyme levels and histopathological changes in the liver of carbon tetrachloride (CCl4) induced hepatotoxicity rats. MATERIALS AND METHODS: This study includes 42 adult male Albino Wistar rats randomly divided into seven treatment groups, including control (basal diet, G1), CCl4-induced single dose (1.5 ml/kg, i.p.) as the negative control (G2), G1 supplemented with 300 mg/kg of ethanol extract of E. thymifolia (G3) and E. hirta (G4), G2 supplemented with 300 mg/kg of ethanol extract of E. thymifolia (G5), E. hirta (G6), and silymarin (25 mg/kg b.w.) used as a standard drug (G7) for 21-days experimental period. RESULTS: The ethanolic extracts of E. thymifolia and E. hirta exhibited potential in vitro antioxidant activity in a dose-dependent manner (25 µg/ml, 50 µg/ml, 100 µg/ml, 200 µg/ml and 250 µg/ml). Oxidative stress caused by CCl4-induced the liver damage, including changes in liver marker enzymes (aspartate aminotransferase, alanine aminotransferase, and alkaline phosphatase), enzymatic (superoxide dismutase and catalase), non-enzymatic antioxidants (lipid peroxides and glutathione) and hepatocellular alterations such as hydropic degeneration, irregular hepatocytes, and distention of the vein. Administration of E. thymifolia and E. hirta significantly (p < 0.05) restored the enzyme activity along with the histology of the liver. CONCLUSION: The results from the current study demonstrate that E. thymifolia and E. hirta have the property of restoring hepatic redox capacity and antioxidant activities against CCl4-induced acute liver damage.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Euphorbia , Masculino , Ratos , Animais , Tetracloreto de Carbono , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Ratos Wistar , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Extratos Vegetais/farmacologia , Extratos Vegetais/metabolismo , Estresse Oxidativo , Fígado , Etanol/farmacologia , Peroxidação de Lipídeos
5.
Cells ; 11(17)2022 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-36078073

RESUMO

The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated (Cas) system is widely used as a genome-editing tool in various organisms, including plants, to elucidate the fundamental understanding of gene function, disease diagnostics, and crop improvement. Among the CRISPR/Cas systems, Cas9 is one of the widely used nucleases for DNA modifications, but manipulation of RNA at the post-transcriptional level is limited. The recently identified type VI CRISPR/Cas systems provide a platform for precise RNA manipulation without permanent changes to the genome. Several studies reported efficient application of Cas13 in RNA studies, such as viral interference, RNA knockdown, and RNA detection in various organisms. Cas13 was also used to produce virus resistance in plants, as most plant viruses are RNA viruses. However, the application of CRISPR/Cas13 to studies of plant RNA biology is still in its infancy. This review discusses the current and prospective applications of CRISPR/Cas13-based RNA editing technologies in plants.


Assuntos
Sistemas CRISPR-Cas , Edição de RNA , Sistemas CRISPR-Cas/genética , Edição de Genes , Plantas/genética , RNA/genética , Edição de RNA/genética
6.
Front Microbiol ; 13: 857493, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35966647

RESUMO

Potato zebra chip (ZC) disease, associated with the uncultured phloem-limited bacterium, Candidatus Liberibacter solanacearum (CLso), is transmitted by the potato psyllid Bactericera cockerelli. Potato ZC disease poses a significant threat to potato production worldwide. Current management practices mainly rely on the control of the psyllid to limit the spread of CLso. The present study investigated new sources of ZC resistance among wild Solanum species. A taxonomically diverse collection of tuber-bearing Solanum species was screened; one ZC-resistant accession and three ZC-tolerant accessions were identified among the 52 screened accessions. Further characterization of the resistant accession showed that the resistance was primarily associated with antibiosis effects due to differences in leaf trichome density and morphology of the wild accession, which could limit the psyllid feeding and oviposition. This germplasm offers a good resource for further understanding ZC and psyllid resistance mechanisms, contributing to potato breeding efforts to develop ZC resistance cultivars. Alternatively, it could be used as a potential trap crop to manage psyllid and control ZC disease.

7.
Plant Physiol ; 188(1): 397-410, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-34597402

RESUMO

The Arabidopsis (Arabidopsis thaliana) BTB-TAZ DOMAIN PROTEIN 2 (BT2) contains an N-terminal BTB domain, a central TAZ zinc-finger protein-protein interaction domain, and a C-terminal calmodulin-binding domain. We previously demonstrated that BT2 regulates telomerase activity and mediates multiple responses to nutrients, hormones, and abiotic stresses in Arabidopsis. Here, we describe the essential role of BT2 in activation of genes by multimerized Cauliflower mosaic virus 35S (35S) enhancers. Loss of BT2 function in several well-characterized 35S enhancer activation-tagged lines resulted in suppression of the activation phenotypes. Suppression of the phenotypes was associated with decreased transcript abundance of the tagged genes. Nuclear run-on assays, mRNA decay studies, and bisulfite sequencing revealed that BT2 is required to maintain the transcriptionally active state of the multimerized 35S enhancers, and lack of BT2 leads to hypermethylation of the 35S enhancers. The TAZ domain and the Ca++/calmodulin-binding domain of BT2 are critical for its function and 35S enhancer activity. We further demonstrate that BT2 requires CULLIN3 and two bromodomain-containing Global Transcription factor group E proteins (GTE9 and GTE11), to regulate 35S enhancer activity. We propose that the BT2-CULLIN3 ubiquitin ligase, through interactions with GTE9 and GTE11, regulates 35S enhancer activity in Arabidopsis.


Assuntos
Arabidopsis/genética , Caulimovirus/genética , Proteínas de Plantas/genética , Regiões Promotoras Genéticas/genética , Ativação Transcricional/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Genótipo , Plantas Geneticamente Modificadas
8.
Front Microbiol ; 12: 700663, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34367101

RESUMO

Potato (Solanum tuberosum L.) is an important food crop worldwide. As the demand for fresh and processed potato products is increasing globally, there is a need to manage and control devastating diseases such as zebra chip (ZC). ZC disease causes major yield losses in many potato-growing regions and is associated with the fastidious, phloem-limited bacterium Candidatus Liberibacter solanacearum (CLso) that is vectored by the potato-tomato psyllid (Bactericera cockerelli Sulc). Current management measures for ZC disease mainly focus on chemical control and integrated pest management strategies of the psyllid vector to limit the spread of CLso, however, they add to the costs of potato production. Identification and deployment of CLso and/or the psyllid resistant cultivars, in combination with integrated pest management, may provide a sustainable long-term strategy to control ZC. In this review, we provide a brief overview of the ZC disease, epidemiology, current management strategies, and potential new approaches to manage ZC disease in the future.

9.
Front Plant Sci ; 12: 745891, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35295863

RESUMO

Sugarcane (Saccharum spp.) is a prominent source of sugar and serves as bioenergy/biomass feedstock globally. Multiple biotic and abiotic stresses, including drought, salinity, and cold, adversely affect sugarcane yield. G-protein-coupled receptors (GPCRs) are components of G-protein-mediated signaling affecting plant growth, development, and stress responses. Here, we identified a GPCR-like protein (ShGPCR1) from sugarcane and energy cane (Saccharum spp. hybrids) and characterized its function in conferring tolerance to multiple abiotic stresses. ShGPCR1 protein sequence contained nine predicted transmembrane (TM) domains connected by four extracellular and four intracellular loops, which could interact with various ligands and heterotrimeric G proteins in the cells. ShGPCR1 sequence displayed other signature features of a GPCR, such as a putative guanidine triphosphate (GTP)-binding domain, as well as multiple myristoylation and protein phosphorylation sites, presumably important for its biochemical function. Expression of ShGPCR1 was upregulated by drought, salinity, and cold stresses. Subcellular imaging and calcium (Ca2+) measurements revealed that ShGPCR1 predominantly localized to the plasma membrane and enhanced intracellular Ca2+ levels in response to GTP, respectively. Furthermore, constitutive overexpression of ShGPCR1 in sugarcane conferred tolerance to the three stressors. The stress-tolerance phenotype of the transgenic lines corresponded with activation of multiple drought-, salinity-, and cold-stress marker genes, such as Saccharum spp. LATE EMBRYOGENESIS ABUNDANT, DEHYDRIN, DROUGHT RESPONSIVE 4, GALACTINOL SYNTHASE, ETHYLENE RESPONSIVE FACTOR 3, SALT OVERLY SENSITIVE 1, VACUOLAR Na+/H+ ANTIPORTER 1, NAM/ATAF1/2/CUC2, COLD RESPONSIVE FACTOR 2, and ALCOHOL DEHYDROGENASE 3. We suggest that ShGPCR1 plays a key role in conferring tolerance to multiple abiotic stresses, and the engineered lines may be useful to enhance sugarcane production in marginal environments with fewer resources.

10.
Nat Commun ; 11(1): 5802, 2020 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-33199718

RESUMO

A major bottleneck in identifying therapies to control citrus greening and other devastating plant diseases caused by fastidious pathogens is our inability to culture the pathogens in defined media or axenic cultures. As such, conventional approaches for antimicrobial evaluation (genetic or chemical) rely on time-consuming, low-throughput and inherently variable whole-plant assays. Here, we report that plant hairy roots support the growth of fastidious pathogens like Candidatus Liberibacter spp., the presumptive causal agents of citrus greening, potato zebra chip and tomato vein greening diseases. Importantly, we leverage the microbial hairy roots for rapid, reproducible efficacy screening of multiple therapies. We identify six antimicrobial peptides, two plant immune regulators and eight chemicals which inhibit Candidatus Liberibacter spp. in plant tissues. The antimicrobials, either singly or in combination, can be used as near- and long-term therapies to control citrus greening, potato zebra chip and tomato vein greening diseases.


Assuntos
Anti-Infecciosos/farmacologia , Ensaios de Triagem em Larga Escala , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Rhizobiaceae/fisiologia , Sequência de Bases , Citrus/efeitos dos fármacos , Citrus/microbiologia , Edição de Genes , Solanum lycopersicum/efeitos dos fármacos , Solanum lycopersicum/microbiologia , Doenças das Plantas/microbiologia , Raízes de Plantas/genética , Rhizobiaceae/efeitos dos fármacos , Solanum tuberosum/efeitos dos fármacos , Solanum tuberosum/microbiologia , Transgenes
11.
Drug Dev Ind Pharm ; 46(12): 2041-2050, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33121271

RESUMO

OBJECTIVE: The present investigation was aimed to evaluate the hepatoprotective potential of ethanolic extract of Psidium guajava (P. guajva) and its isolated quercetin fraction on carbon tetrachloride (CCl4)-induced hepatotoxicity. MATERIALS AND METHODS: The rats were divided into 6 groups and each group contained 6 rats. CCl4 (1.5 ml/kg b.w.) was used to induce the hepatotoxicity. Ethanolic extract of P. guajava (300 mg/kg b.w.), isolated quercetin fraction (20 mg/kg b.w.) were used as a treatment and silymarin (25 mg/kg b.w.) was used as a standard drug. After the study period, the liver tissues were collected and evaluate the levels of liver functional markers, mitochondrial enzymes, histopathological analysis and the expressions of inflammatory markers. RESULTS: The levels of liver functional markers were increased and protein, albumin and A/G ratio levels were decreased and the decreased levels of mitochondrial enzymes were noted in CCl4-induced rats and the levels were restored near to normal significantly when the administration ethanolic extract of P. guajava, isolated quercetin fraction and silymarin. The normal architecture of liver tissues were altered and the mRNA expressions were up-regulated in CCl4-induced rats and the liver tissues were normalized and the mRNA and protein expressions were down-regulated near to normal significantly when the administration of ethanolic extract of P. guajava, isolated quercetin fraction and silymarin. CONCLUSION: From these results, the isolated quercetin fractions have better activity than that of the ethanolic extract of P. guajava leaves. Hence, the isolated quercetin may be used as the safest drug for hepatotoxicity in future.


Assuntos
Tetracloreto de Carbono/química , Doença Hepática Induzida por Substâncias e Drogas , Psidium , Silimarina , Animais , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Fígado , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Ratos , Silimarina/farmacologia
12.
GM Crops Food ; 9(4): 211-227, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30558472

RESUMO

Sugarcane and energycane (Saccharum spp. hybrids) are prominent sources of sugar, ethanol, as well as high-value bioproducts globally. Genetic analysis for trait improvement of sugarcane is greatly hindered by its complex genome, limited germplasm resources, long breeding cycle, as well as recalcitrance to genetic transformation. Here, we present a biolistic-based transformation and bioreactor-based micro-propagation system that has been utilized successfully to transform twelve elite cane genotypes, yielding transformation efficiencies of up to 39%. The system relies on the generation of embryogenic callus from sugarcane and energycane apical shoot tissue, followed by DNA bombardment of embryogenic leaf roll discs (approximately one week) or calli (approximately 4 weeks). We present optimal criteria and practices for selection and regeneration of independent transgenic lines, molecular characterization, as well as a bioreactor-based micro-propagation technique, which can aid in rapid multiplication and analysis of transgenic lines. The cane transformation and micro-propagation system described here, although built on our previous protocols, has significantly accelerated the process of producing and multiplying transgenic material, and it is applicable to other varieties. The system is highly reproducible and has been successfully used to engineer multiple commercial sugarcane and energycane varieties. It will benefit worldwide researchers interested in genomics and genetics of sugarcane photosynthesis, cell wall, and bioenergy related traits.

13.
AIAA J ; 55(9): 2859-2874, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33510539

RESUMO

The advancement of flow measurement techniques continues to extend experimental boundaries and thus significantly contributes to improving our understanding of both basic and applied aerodynamics. This is particularly apparent in the case of particle image velocimetry (PIV), where its application has furthered the existing knowledge in several areas of helicopter rotor aerodynamics. The complex nature of helicopter rotor flows presents unique challenges to experimentalists, including transonic flow, concentrated vortices and dynamic stall. To illustrate the impact of the technological advancements on the way helicopter aerodynamics is studied today, the development of PIV since the early nineties of the last century is reviewed and some recent PIV applications are described. Using examples of main rotor wakes, dynamic stall and flow control investigations, the capabilities of large-scale, time-resolved and volumetric PIV are summarized.

14.
J Pharm Bioallied Sci ; 5(Suppl 1): S54-9, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23946578

RESUMO

AIM: To evaluate and compare the variations in the inclination of occlusal plane of casts mounted on Artex articulator using a facebow with a fixed value and customized nasion indicator. MATERIALS AND METHODS: Twenty two subjects were selected for this investigation. Two maxillary impressions were made, and casts poured. For each of the twenty two subjects, the facebow records were made with, Artex face-bow using a fixed value nasion indicator and customized nasion indicator and mounted. The angle between the occlusal plane of upper cast and the upper articulator arm was measured with a Universal bevel protractor and compared with the gold standard cephalometric value. RESULTS: It shows that, when angle was measured between maxillary occlusal plane and upper member of the articulator, on the mounted cast using a customized nasion indicator and fixed value nasion indicator against the gold standard cephalometric value as a whole, it was found to be not significant. But, if each patient were evaluated individually, there found to be the difference in the angle. DISCUSSION AND CONCLUSION: Variation in occlusal plane was very minimal and close to the cephalometric value when using customized nasion indicator compared to fixed value nasion indicator on the Artex.

15.
J Pharm Bioallied Sci ; 5(Suppl 1): S98-S102, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23946587

RESUMO

Advent of osseointegration has rapidly led to use of dental implants over recent years. Implant complications are often inadvertent sequelae of improper diagnosis, treatment planning, surgical method, and placement. This can be overcome by using surgical guides for implant positioning. Although conventionally made surgical guide are used, the clinical outcome is often unpredictable, and even if the implants are well placed, the location and deviation of the implants may not meet the optimal prosthodontic requirements. High accuracy in planning and execution of surgical procedures is important in securing a high success rate without causing iatrogenic damage. This can be achieved by computed tomography, 3D implant planning software, image-guided template production techniques, and computer-aided surgery. This article evaluates about the various systems of conventionally made surgical guide using radiograph and also the newer computer generated surgical guide in detail.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...